Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus.
نویسندگان
چکیده
Imaging of meniscal tissue reveals an extracellular matrix comprised of collagen fibrils arranged in circumferential bundles and radially aligned tie fibers, implicating structural material anisotropy. Biochemical analyses demonstrate regional disparities of proteoglycan content throughout the meniscal body, a constituent known to affect the shearing response of fibrocartilagenous tissue. Despite this phenomenological evidence and previous mechanical testing implicating otherwise, the meniscus if often modeled as a homogeneous, transversely isotropic material with little regard for regional specificity and material properties. The aim of this investigation was to determine if shear stress response homogeneity and directionality exists in and between bovine menisci with respect to anatomical location (medial and lateral), region (anterior, central, and posterior) and fiber orientation (parallel and perpendicular). Meniscus explants were subjected to lap shear strain at 0.002 s(-1) with the circumferential collagen fibers oriented parallel or perpendicular to the loading axis. Comparisons were made using a piecewise linear elastic analysis. The toe region shear modulus was calculated from the first observed linear region, between 3% and 13% strain and the extended shear modulus was established after 80% of the maximum shear strain. The posterior region was significantly different than the central for the extended shear modulus, correlating with known proteoglycan distribution. Observed shearing anisotropy led to the use of an anisotropic hyperelastic model based on a two-fiber family composite, previously used for arterial walls. The chosen model provided an excellent fit to the sample population for each region. These data can be utilized in the advancement of finite element modeling as well as biomimetic tissue engineered constructs.
منابع مشابه
Dipolar anisotropy fiber imaging in a goat knee meniscus.
This study describes a method of utilizing unaveraged dipolar effects to characterize and compute collagen fiber tracks using magnetic resonance imaging. The technique yields information about fiber structure with some similarities to what can be obtained in brain using diffusion tensor imaging, but relies on a completely different physical mechanism, namely, unaveraged homonuclear dipolar inte...
متن کاملFiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds.
Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering str...
متن کاملTensile properties of the mandibular condylar cartilage.
Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the temporomandibular joint disc and reducing loads on the underlying bone. The cartilage experiences considerable tensile forces due to direct compression and shear. However, only scarce information is available about its tensile properties. The present st...
متن کاملThe Effect of Spatial Variability and Anisotropy of Soils on Bearing Capacity of Shallow Foundations
Naturally occurred soil deposits inherit heterogeneity and anisotropy in their strength properties. The main purpose of this paper is to model the soil stratum with anisotropy consideration and spatially varying undrained shear strength by using random field theory coupled with finite difference numerical analysis to evaluate their effect on the bearing capacity of the shallow foundations. In t...
متن کاملStructure-function relations and rigidity percolation in the shear properties of articular cartilage.
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2011